The relativistic Lie algebra expansion: from Galilei to Poincaré
نویسندگان
چکیده
We extend a Lie algebra expansion method recently introduced for the (2 + 1)dimensional kinematical algebras to the expansions of the (3 + 1)-dimensional Galilei algebra. One of these expansions goes from the (3 + 1)-dimensional Galilei algebra to the Poincaré one; this process introduces a curvature equal to −1/c, where c is the relativistic constant, in the space of worldlines. This expansion therefore reverses, at the Lie algebra level, the non-relativistic contraction c → ∞ from the Poincaré group to the Galilei one. The Galilei algebra allows another natural expansion to the Newton–Hooke algebras; these expansions which recover a non-zero spacetime curvature ±1/τ, where τ is the Newton–Hooke universe time radius, are also studied by using the same method.
منابع مشابه
A new Lie algebra expansion method: Galilei expansions to Poincaré and Newton–Hooke
We modify a Lie algebra expansion method recently introduced for the (2 + 1)dimensional kinematical algebras so as to work for higher dimensions. This new improved and geometrical procedure is applied to expanding the (3 + 1)-dimensional Galilei algebra and leads to its physically meaningful ‘expanded’ neighbours. One expansion gives rise to the Poincaré algebra, introducing a curvature −1/c in...
متن کاملF - 13288 Marseille Cedex 9 ( France
This article provides us with a unifying classification of the conformal infinitesimal symmetries of non-relativistic Newton-Cartan spacetime. The Lie algebras of non-relativistic conformal transformations are introduced via the Galilei structure. They form a family of infinite-dimensional Lie algebras labeled by a rational “dynamical exponent”, z. The Schrödinger-Virasoro algebra of Henkel et ...
متن کامل(Anti)de Sitter/Poincaré symmetries and representations from Poincaré/Galilei through a classical deformation approach
A classical deformation procedure, based on universal enveloping algebras, Casimirs and curvatures of symmetrical homogeneous spaces, is applied to several cases of physical relevance. Starting from the (3 + 1)D Galilei algebra, we describe at the level of representations the process leading to its two physically meaningful deformed neighbours. The Poincaré algebra is obtained by introducing a ...
متن کاملLie Bialgebra Structures on Twodimensional Galilei Algebra and Their Lie–poisson Counterparts
All bialgebra structures on twodimensional Galilei algebra are classified. The corresponding Lie–Poisson structures on Galilei group are found. ∗Supported by the Lódź University Grant No.487
متن کاملNon-relativistic conformal symmetries and Newton-Cartan structures
This article provides us with a unifying classification of the conformal infinitesimal symmetries of non-relativistic Newton-Cartan spacetime. The Lie algebras of non-relativistic conformal transformations are introduced via the Galilei structure. They form a family of infinite-dimensional Lie algebras labeled by a rational “dynamical exponent”, z. The Schrödinger-Virasoro algebra of Henkel et ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1999